Finding Structure with Randomness

Joel A. Tropp

Computing \& Mathematical Sciences
California Institute of Technology jtropp@acm.caltech.edu

Joint with P.-G. Martinsson and N. Halko

Applied Mathematics, Univ. Colorado at Boulder

Top 10 Scientific Algorithms

 VVC'
the articles appear in no particular order):
enc

- Metropolis Algorithm for Montc Carlovol- Simplex Mcthod for Linear Programmingof v
of c- Krylov Subspace Iteration Mcthods- The Decompositional Approach to Matrixway
eveComputationsrela
- The Fortran Optimizing Compiler
- QRagran Opi cong pro
- QR Algorithm for Computing Eigenvalues are
- Quicksort Algorithm for Sorting hig
- Fast Fourier Transform J
- Integer Relation Detection ing
- Fast Multipole Method wol
plas
With each of these algorithms or approaches, there wh:
is a nerson or ornmer receivino credit for inventino or nnt

Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.

The Decompositional Approach

"The underlying principle of the decompositional approach to matrix computation is that it is not the business of the matrix algorithmicists to solve particular problems but to construct computational platforms from which a variety of problems can be solved."

A decomposition solves not one but many problems
Often expensive to compute but can be reused
Shows that apparently different algorithms produce the same object
Facilitates rounding-error analysis
Can be updated efficiently to reflect new information
Has led to highly effective black-box software
Source: Stewart 2000.

Low-Rank Matrix Approximation

Benefits:

Exposes structure of the matrix
Allows efficient storage
Facilitates multiplication with vectors or other matrices

Applications:

Principal component analysis
Low-dimensional embedding of data
Approximating continuum operators with exponentially decaying spectra
Model reduction for PDEs with rapidly oscillating coefficients

Model Problem

Given:

An $m \times n$ matrix \boldsymbol{A} with $m \geq n$
Target rank k
Oversampling parameter p
Construct an $n \times(k+p)$ matrix \boldsymbol{Q} with orthonormal columns s.t.

$$
\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \approx \min _{\operatorname{rank}(\boldsymbol{B}) \leq k}\|\boldsymbol{A}-\boldsymbol{B}\|
$$

$Q Q^{*}$ is the orthogonal projector onto the range of \boldsymbol{Q}
The basis Q can be used to construct matrix decompositions

From Basis to Decomposition

Problem: Given the basis Q, where do we get a factorization?

Example: Singular value decomposition
Assume \boldsymbol{A} is $m \times n$ and \boldsymbol{Q} is $m \times k$ where $\boldsymbol{A} \approx \boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}$.

1. Form $k \times n$ matrix $\boldsymbol{B}=\boldsymbol{Q}^{*} \boldsymbol{A}$
2. Factor $\boldsymbol{B}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$
3. Conclude $\boldsymbol{A} \approx(\boldsymbol{Q} \boldsymbol{U}) \boldsymbol{\Sigma} \boldsymbol{V}^{*}$

Random Sampling: Intuition

Proto-Algorithm for Model Problem

Converting this intuition into a computational procedure...

Input: An $m \times n$ matrix \boldsymbol{A}, a target rank k, an oversampling parameter p
Output: An $m \times(k+p)$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times(k+p)$ random matrix $\boldsymbol{\Omega}$.
2. Form the matrix product $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$.
3. Construct an orthonormal basis \boldsymbol{Q} for the range of \boldsymbol{Y}.

Approximating a Helmholtz Integral Operator

(Simplified) Error Bound for Proto-Algorithm

Theorem 1. [HMT 2011] Assume

the matrix \boldsymbol{A} is $m \times n$ with $m \geq n$;
se the optimal error $\sigma_{k+1}=\min _{\operatorname{rank}(\boldsymbol{B}) \leq k}\|\boldsymbol{A}-\boldsymbol{B}\|$;
the test matrix $\boldsymbol{\Omega}$ is $n \times(k+p)$ standard Gaussian.
Then the basis Q computed by the proto-algorithm satisfies

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\frac{4 \sqrt{k+p}}{p-1} \cdot \sqrt{n}\right] \sigma_{k+1}
$$

The probability of a substantially larger error is negligible.

Proto-Algorithm + Power Scheme

Problem: The singular values of the data matrix often decay slowly
Remedy: Apply the proto-algorithm to $\left(\boldsymbol{A} \boldsymbol{A}^{*}\right)^{q} \boldsymbol{A}$ for small q

Input: An $m \times n$ matrix \boldsymbol{A}, a target rank k, an oversampling parameter p
Output: An $m \times(k+p)$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times(k+p)$ random matrix $\boldsymbol{\Omega}$.
2. Form the matrix product $\boldsymbol{Y}_{0}=\boldsymbol{A} \boldsymbol{\Omega}$.
3. Sequentially form $\boldsymbol{Y}_{k}=\left(\boldsymbol{A} \boldsymbol{A}^{*}\right) \boldsymbol{Y}_{k}$ for $k=1,2, \ldots, q$.
4. Construct an orthonormal basis \boldsymbol{Q} for the range of $\left[\boldsymbol{Y}_{0}\left|\boldsymbol{Y}_{1}\right| \ldots \mid \boldsymbol{Y}_{q}\right]$.

Open Question: Can we improve using Lanczos?

Eigenfaces

Database consists of 7,254 photographs with 98,304 pixels each
F Form $98,304 \times 7,254$ data matrix $\widetilde{\boldsymbol{A}}$
Total storage: 5.4 Gigabytes (uncompressed)
Center each column and scale to unit norm to obtain \boldsymbol{A}
The dominant left singular vectors are called eigenfaces
Attempt to compute first 100 eigenfaces using power scheme

Image: Scholarpedia article "Eigenfaces," 12 October 2009

(Simplified) Error Bound for Power Scheme

Theorem 2. [HMT 2011] Assume

ce the matrix \boldsymbol{A} is $m \times n$ with $m \geq n$;
the optimal error $\sigma_{k+1}=\min _{\operatorname{rank}(\boldsymbol{B}) \leq k}\|\boldsymbol{A}-\boldsymbol{B}\|$;
the test matrix $\boldsymbol{\Omega}$ is $n \times(k+p)$ standard Gaussian.

Then the basis Q computed by the power scheme satisfies

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\frac{4 \sqrt{k+p}}{p-1} \cdot \sqrt{n}\right]^{1 /(2 q+1)} \sigma_{k+1}
$$

The probability of a substantially larger error is negligible.
The power scheme drives the extra factor to one exponentially fast!
Qualitative improvement for error bound (various authors, 2015)

To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Papers:

HMT, "Finding Structure with Randomness: Probabilistic Algorithms for Computing Approximate Matrix Decompositions," SIREV 2011.
a T, "Improved Analysis of the Subsampled Randomized Hadamard Transform," AADA 2011.

