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Top 10 Scientific Algorithms
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the articles appear in no particular order):

® Metropolis Algorithm for Monte Carlo

¢ Simplex Mcthod for Lincar Programming

* Krylov Subspace Iteration Mcthods

® The Decompositional Approach to Matrix
Computations

* The Fortran Optimizing Compiler

QR Algorithm for Computing Eigenvalues

Quicksort Algorithm for Sorting

Iast Fourier Transform

Integer Relation Detection

Fast Multipole Method

With cach of these algorithms or approaches, there
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Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.
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The Decompositional Approach

“The underlying principle of the decompositional approach to matrix
computation is that it is not the business of the matrix algorithmicists
to solve particular problems but to construct computational
platforms from which a variety of problems can be solved.”

@ A decomposition solves not one but many problems

« Often expensive to compute but can be reused

& Shows that apparently different algorithms produce the same object
« Facilitates rounding-error analysis

« Can be updated efficiently to reflect new information

« Has led to highly effective black-box software

Source: Stewart 2000.
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Low-Rank Matrix Approximation

A ~ B C,
m X n mxk kXn.

Benefits:

« Exposes structure of the matrix
- Allows efficient storage
« Facilitates multiplication with vectors or other matrices

Applications:

@ Principal component analysis

- Low-dimensional embedding of data

@ Approximating continuum operators with exponentially decaying spectra
:0- Model reduction for PDEs with rapidly oscillating coefficients
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Model Problem

Given:

@ An m X n matrix A with m > n
« Target rank k
« Qversampling parameter p

Construct an n x (k + p) matrix Q with orthonormal columns s.t.

IA-QQAll~ min _|A- B,
rank(B)<k

@ (QQT* is the orthogonal projector onto the range of Q
@ The basis () can be used to construct matrix decompositions
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From Basis to Decomposition

Problem: Given the basis (), where do we get a factorization?

Example: Singular value decomposition

Assume A ism xn and QQ is m X k where A ~ QQ*A.

1. Form k£ X n matrix B = Q*A
2. Factor B=UXV"*

3. Conclude A =~ (QU)XV™*
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Random Sampling: Intuition
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Proto-Algorithm for Model Problem

« Converting this intuition into a computational procedure...

Input: An m X n matrix A, a target rank k£, an oversampling parameter p

Output: An m x (k + p) matrix Q with orthonormal columns

1. Draw an n x (k + p) random matrix €2.
2. Form the matrix product Y = A().
3. Construct an orthonormal basis () for the range of Y.
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Approximating a Helmholtz Integral Operator

Approximation errors

B
I T T T T T T a
<> 0
o )
<> )
<> )
<P )
£ 3
3 P @
<P 0]
<o 3 X &
<= 3 b 35 0
o o o 1 o
IR X 0 19
o0 o0 oo JS ) N
O O O N0 )
— 08 0))
£ 8
< O X 0% 0}
o)
o
0
—
o
(=)
—
o
0

| |
[c¢] o N
oF T

—14}+
-16}
-18

opnjIuseur Jo I0pI()

Finding Structure with Randomness, DMML, Berkeley, 24 October 2015



(Simplified) Error Bound for Proto-Algorithm

Theorem 1. [HMT 2011] Assume

:a the matrix A is m X n with m > n;
@ the optima/ error og+1 — minrank(B)Sk HA — BH,
:a the test matrix 2 isn X (k + p) standard Gaussian.

Then the basis (Q computed by the proto-algorithm satisfies

. 4k Fp
E|A-QQAl < |1+ p_lpw Okl

The probability of a substantially larger error is negligible.
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Proto-Algorithm + Power Scheme

Problem: The singular values of the data matrix often decay slowly

Remedy: Apply the proto-algorithm to (AA*)?A for small g

Input: An m X n matrix A, a target rank k, an oversampling parameter p

Output: An m x (k + p) matrix Q with orthonormal columns

1. Draw an n x (k + p) random matrix 2.

2. Form the matrix product Yy = AQ.

3. Sequentially form Y, = (AA*)Yy for k=1,2,...,q.

4. Construct an orthonormal basis Q for the rangeof [ Yo | Y1 | ... | Y, |.

Open Question: Can we improve using Lanczos?
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Eigenfaces

« Database consists of 7,254 photographs with 98, 304 pixels each
@ Form 98,304 x 7,254 data matrix A
¢ Total storage: 5.4 Gigabytes (uncompressed)

‘8 Center each column and scale to unit norm to obtain A

« The dominant left singular vectors are called eigenfaces
@ Attempt to compute first 100 eigenfaces using power scheme

Image: Scholarpedia article “Eigenfaces,” 12 October 2009
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(Simplified) Error Bound for Power Scheme

Theorem 2. [HMT 2011] Assume

:a the matrix A ism X n withm > n;

’

:a. the optimal error oj.41 = min, ik (By<k |A — B
& the test matrix 2 isn X (k + p) standard Gaussian.

Then the basis (Q computed by the power scheme satisfies

1/(2q+1
4\/@\/5 /(2q+1)

E[JA-QQ*A| < |1+
p—1

Ok+1-
The probability of a substantially larger error is negligible.

0 The power scheme drives the extra factor to one exponentially fast!
¢a- Qualitative improvement for error bound (various authors, 2015)
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To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Papers:

@ HMT, “Finding Structure with Randomness: Probabilistic Algorithms for Computing
Approximate Matrix Decompositions,” SIREV 2011.

@ T, “Improved Analysis of the Subsampled Randomized Hadamard Transform,” AADA
2011.
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