The Big Bang Theory In High Accuracy Computations

Ren-Cang Li
University of Texas at Arlington

DMML

October 24, 2015

1 The Big Bang

2 Two immediate "after bangs"
3 Aftermath - Summary
4 Case Study
■ Inverse of M-Matrix
■ M-matrix algebraic Riccati equation
5 Conclusions

1 The Big Bang

2 Two immediate "after bangs"

3 Aftermath-Summary

4 Case Study
■ Inverse of M-Matrix

- M-matrix algebraic Riccati equation

5 Conclusions

An unknown number x, waiting to be computed.

Best approximation \widetilde{x}, differing from x within half unit in the last

sign exponent binarypoint fraction

This hardly ever happens! How about several ulps?

An unknown number x, waiting to be computed.
Best approximation \widetilde{x}, differing from x within half unit in the last place (ulp):

An unknown number x, waiting to be computed.
Best approximation \widetilde{x}, differing from x within half unit in the last place (ulp):

This hardly ever happens! How about several ulps?

An unknown number x, waiting to be computed.
Best approximation \widetilde{x}, differing from x within half unit in the last place (ulp):

This hardly ever happens! How about several ulps? Still unlikely, until ...

The Big Bang
$\sum_{m}^{N M}$
J. Demmel and W. Kahan.

Accurate singular values of bidiagonal matrices.
SIAM J. Sci. Statist. Comput.,
11:873-912, 1990.

Open the door to high relative accuracy computation research for coming years!

J. Demmel and W. Kahan.

Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist. Comput., 11:873-912, 1990.

J. Demmel and W. Kahan.

Accurate singular values of bidiagonal matrices.
SIAM J. Sci. Statist. Comput., 11:873-912, 1990.

Open the door to high relative accuracy computation research for coming years!
$B=\operatorname{bidiag}\left(\begin{array}{lllllllll}a_{1} & & a_{2} & & a_{3} & \cdots & a_{n-1} & & a_{n} \\ & b_{1} & & b_{2} & & \cdots & & b_{n-1} & \end{array}\right)$
perturbed to bidiagonal \widetilde{B} :
diagonal $\alpha_{i} \boldsymbol{a}_{i}$, off-diagonal $\beta_{j} \boldsymbol{b}_{j}$.
$B=\operatorname{bidiag}\left(\begin{array}{lllllllll}a_{1} & & a_{2} & & a_{3} & \cdots & a_{n-1} & & a_{n} \\ & b_{1} & & b_{2} & & \cdots & & b_{n-1} & \end{array}\right)$
perturbed to bidiagonal \widetilde{B} :
diagonal $\alpha_{i} a_{i}$, off-diagonal $\beta_{j} b_{j}$.
$\sigma_{i}(B)$: singular values of B in decreasing order; similarly $\sigma_{i}(\widetilde{B})$.
$B=\operatorname{bidiag}\left(\begin{array}{lllllllll}a_{1} & & a_{2} & & a_{3} & \cdots & a_{n-1} & & \\ & b_{1} & & b_{2} & & \cdots & & a_{n-1} & \end{array}\right)$
perturbed to bidiagonal \widetilde{B} :
diagonal $\alpha_{i} \boldsymbol{a}_{i}$, off-diagonal $\beta_{j} \boldsymbol{b}_{j}$.
$\sigma_{i}(B)$: singular values of B in decreasing order; similarly $\sigma_{i}(\widetilde{B})$.
Let $\gamma=\Pi_{i, j} \max \left\{\left|\alpha_{i}\right|,\left|\alpha_{i}\right|^{-1}\right\} \max \left\{\left|\beta_{j}\right|,\left|\beta_{j}\right|^{-1}\right\}$. Then

$$
\frac{\sigma_{i}(B)}{\gamma} \leq \sigma_{i}(\widetilde{B}) \leq \gamma \sigma_{i}(B) .
$$

It is asymptotically sharp.

Key Result - Perturbation Theorem

In particular, if $1-\epsilon \leq\left|\alpha_{i}\right|,\left|\beta_{j}\right| \leq 1+\epsilon$, where $\epsilon>0$, then
$1-(2 n-1) \epsilon \approx(1-\epsilon)^{2 n-1} \leq \gamma^{-1} \leq \gamma \leq(1-\epsilon)^{-(2 n-1)} \approx 1+(2 n-1) \epsilon$.

In particular, if $1-\epsilon \leq\left|\alpha_{i}\right|,\left|\beta_{j}\right| \leq 1+\epsilon$, where $\epsilon>0$, then
$1-(2 n-1) \epsilon \approx(1-\epsilon)^{2 n-1} \leq \gamma^{-1} \leq \gamma \leq(1-\epsilon)^{-(2 n-1)} \approx 1+(2 n-1) \epsilon$.

For example, $\epsilon=$ machine roundoff $\Rightarrow \sigma_{i}(B)$ and $\sigma_{i}(\widetilde{B})$ differ by at most n ulps.

In particular, if $1-\epsilon \leq\left|\alpha_{i}\right|,\left|\beta_{j}\right| \leq 1+\epsilon$, where $\epsilon>0$, then
$1-(2 n-1) \epsilon \approx(1-\epsilon)^{2 n-1} \leq \gamma^{-1} \leq \gamma \leq(1-\epsilon)^{-(2 n-1)} \approx 1+(2 n-1) \epsilon$.

For example, $\epsilon=$ machine roundoff $\Rightarrow \sigma_{i}(B)$ and $\sigma_{i}(\widetilde{B})$ differ by at most n ulps.

Favorably compared with classical result:

$$
\frac{\left|\sigma_{i}(B)-\sigma_{i}(\widetilde{B})\right|}{\sigma_{i}(B)} \leq \frac{\sigma_{1}(B)}{\sigma_{i}(B)} 2\left|\gamma^{\prime}-1\right|, \quad \gamma^{\prime}=\max _{i, j}\left\{\left|\alpha_{i}\right|,\left|\beta_{j}\right|\right\}
$$

Key Result - Convergence Criteria

Need two simple recursions:
■ $\lambda_{n}=\left|a_{n}\right|$, and $\lambda_{j}=\left|a_{j}\right|\left[\lambda_{j+1} /\left(\lambda_{j+1}+\left|b_{j}\right|\right)\right]$;
$\square \mu_{1}=\left|a_{1}\right|$, and $\mu_{j+1}=\left|a_{j+1}\right|\left[\mu_{j} /\left(\mu_{j}+\left|b_{j}\right|\right)\right]$.

Need two simple recursions:
■ $\lambda_{n}=\left|a_{n}\right|$, and $\lambda_{j}=\left|a_{j}\right|\left[\lambda_{j+1} /\left(\lambda_{j+1}+\left|b_{j}\right|\right)\right]$;
■ $\mu_{1}=\left|a_{1}\right|$, and $\mu_{j+1}=\left|a_{j+1}\right|\left[\mu_{j} /\left(\mu_{j}+\left|b_{j}\right|\right)\right]$.
Convergence Criterion 1. Setting b_{j} to 0 will change all $\sigma_{i}(B)$ relatively by no more than ϵ, provided $\min \left\{b_{j} / \lambda_{j+1}\left|,\left|b_{j} / \mu_{j}\right|\right\} \leq \epsilon\right.$.

Need two simple recursions:
■ $\lambda_{n}=\left|a_{n}\right|$, and $\lambda_{j}=\left|a_{j}\right|\left[\lambda_{j+1} /\left(\lambda_{j+1}+\left|b_{j}\right|\right)\right]$;
■ $\mu_{1}=\left|a_{1}\right|$, and $\mu_{j+1}=\left|a_{j+1}\right|\left[\mu_{j} /\left(\mu_{j}+\left|b_{j}\right|\right)\right]$.
Convergence Criterion 1 . Setting b_{j} to 0 will change all $\sigma_{i}(B)$ relatively by no more than ϵ, provided $\min \left\{b_{j} / \lambda_{j+1}\left|,\left|b_{j} / \mu_{j}\right|\right\} \leq \epsilon\right.$.

Convergence Criterion 2. Setting b_{n-1} to 0 will change all $\sigma_{i}(B)$ relatively by no more than $n \epsilon$, provided $\left|b_{n-1}\right|^{2} \leq .5 \epsilon\left[\delta^{2}-\left|a_{n}\right|^{2}\right]$, where $\delta=\sigma_{\min }\left(B_{(1: n-1,1: n-1)}\right)$.

Need two simple recursions:
■ $\lambda_{n}=\left|a_{n}\right|$, and $\lambda_{j}=\left|a_{j}\right|\left[\lambda_{j+1} /\left(\lambda_{j+1}+\left|b_{j}\right|\right)\right]$;
■ $\mu_{1}=\left|a_{1}\right|$, and $\mu_{j+1}=\left|a_{j+1}\right|\left[\mu_{j} /\left(\mu_{j}+\left|b_{j}\right|\right)\right]$.
Convergence Criterion 1 . Setting b_{j} to 0 will change all $\sigma_{i}(B)$ relatively by no more than ϵ, provided $\min \left\{b_{j} / \lambda_{j+1}\left|,\left|b_{j} / \mu_{j}\right|\right\} \leq \epsilon\right.$.

Convergence Criterion 2. Setting b_{n-1} to 0 will change all $\sigma_{i}(B)$ relatively by no more than $n \epsilon$, provided $\left|b_{n-1}\right|^{2} \leq .5 \epsilon\left[\delta^{2}-\left|a_{n}\right|^{2}\right]$, where $\delta=\sigma_{\min }\left(B_{(1: n-1,1: n-1)}\right)$.

Both cheap to implement.

Zero-shift QR will deliver computed σ_{i} all bits accurately, except last few bits.

Previously, up to an error $O\left(\epsilon \sigma_{1}\right)$. Thus for σ_{i} relatively so tiny such that

$$
\sigma_{1} / \sigma_{i}=O(1 / \epsilon),
$$

no bits are guaranteed to be correct.

Key Result - Singular Vectors

Conjecture. Singular vectors are also well-determined and accurately computed in the sense that committed errors is inversely proportional to relative singular value gaps:

$$
\sin \theta\left(v_{i}, \widetilde{v}_{i}\right) \leq \frac{O(\gamma)}{\operatorname{RelGap}_{i}}, \quad \operatorname{RelGap}_{i}:=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\sigma_{i}}
$$

Key Result - Singular Vectors

Conjecture. Singular vectors are also well-determined and accurately computed in the sense that committed errors is inversely proportional to relative singular value gaps:

$$
\sin \theta\left(v_{i}, \widetilde{v}_{i}\right) \leq \frac{O(\gamma)}{\operatorname{RelGap}_{i}}, \quad \operatorname{RelGap}_{i}:=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\sigma_{i}}
$$

In contrast to the classical one $\left(\gamma^{\prime}=\Pi_{i, j}=\max \left\{\alpha_{i}, \beta_{j}\right\}\right)$:

$$
\sin \theta\left(v_{i}, \widetilde{v}_{i}\right) \leq \frac{O\left(\gamma^{\prime}\right)}{\operatorname{AbsGap}_{i}}, \quad \operatorname{AbsGap}_{i}:=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\|B\|_{2}} .
$$

Key Result - Singular Vectors

Conjecture. Singular vectors are also well-determined and accurately computed in the sense that committed errors is inversely proportional to relative singular value gaps:

$$
\sin \theta\left(v_{i}, \widetilde{v}_{i}\right) \leq \frac{O(\gamma)}{\operatorname{RelGap}_{i}}, \quad \operatorname{RelGap}_{i}:=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\sigma_{i}}
$$

In contrast to the classical one $\left(\gamma^{\prime}=\Pi_{i, j}=\max \left\{\alpha_{i}, \beta_{j}\right\}\right)$:

$$
\sin \theta\left(v_{i}, \widetilde{v}_{i}\right) \leq \frac{O\left(\gamma^{\prime}\right)}{\operatorname{AbsGap}_{i}}, \quad \operatorname{AbsGap}_{i}:=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\|B\|_{2}} .
$$

Positively confirmed by Jim, et. al in a paper of 54 pages.

Key Result - Singular Vectors

Conjecture. Singular vectors are also well-determined and accurately computed in the sense that committed errors is inversely proportional to relative singular value gaps:

$$
\sin \theta\left(v_{i}, \widetilde{v}_{i}\right) \leq \frac{O(\gamma)}{\operatorname{ReIGap}_{i}}, \quad \text { RelGap } i:=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\sigma_{i}} .
$$

In contrast to the classical one $\left(\gamma^{\prime}=\Pi_{i, j}=\max \left\{\alpha_{i}, \beta_{j}\right\}\right)$:

$$
\sin \theta\left(v_{i}, \widetilde{v}_{i}\right) \leq \frac{O\left(\gamma^{\prime}\right)}{\text { AbsGap }_{i}}, \quad \text { AbsGap }{ }_{i}:=\min _{j \neq i} \frac{\left|\sigma_{i}-\sigma_{j}\right|}{\|B\|_{2}} .
$$

Positively confirmed by Jim, et. al in a paper of 54 pages.
Example. Singular values: $1.5,2.0 \times 10^{-16}, 1.0 \times 10^{-16}$. Then

$$
\text { AbsGap }_{3}=\min _{j \neq 3}\left|\sigma_{3}-\sigma_{j}\right|=10^{-16}, \quad \text { RelGap }_{3} \approx 1 .
$$

1 The Big Bang

2 Two immediate "after bangs"

3 Aftermath - Summary

4 Case Study
■ Inverse of M-Matrix

- M-matrix algebraic Riccati equation

5 Conclusions

Scaled Diagonally Dominant Matrices

J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.

Scaled Diagonally Dominant Matrices

J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.
$A=\Omega+N$ is γ-diagonally dominant (d.d.): $\Omega=\operatorname{diag}, \operatorname{diag}(N)=0$, $\|N\|_{2} \leq \gamma \min _{i}\left|\Omega_{i}\right|, 0 \leq \gamma<1$.

Scaled Diagonally Dominant Matrices

J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.
$A=\Omega+N$ is γ-diagonally dominant (d.d.): $\Omega=\operatorname{diag}, \operatorname{diag}(N)=0$, $\|N\|_{2} \leq \gamma \min _{i}\left|\Omega_{i}\right|, 0 \leq \gamma<1$.
A is always well-conditioned: $\kappa(A) \leq \frac{\max \Omega_{i}+\gamma}{\min \Omega_{i}-\gamma}$;

Scaled Diagonally Dominant Matrices

J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.
$A=\Omega+N$ is γ-diagonally dominant (d.d.): $\Omega=\operatorname{diag}, \operatorname{diag}(N)=0$, $\|N\|_{2} \leq \gamma \min _{i}\left|\Omega_{i}\right|, 0 \leq \gamma<1$.
\boldsymbol{A} is always well-conditioned: $\kappa(A) \leq \frac{\max \Omega_{i}+\gamma}{\min \Omega_{i}-\gamma} ; \quad$ Can be nonsymmetric;

Scaled Diagonally Dominant Matrices

J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.
$A=\Omega+N$ is γ-diagonally dominant (d.d.): $\Omega=\operatorname{diag}, \operatorname{diag}(N)=0$, $\|N\|_{2} \leq \gamma \min _{i}\left|\Omega_{i}\right|, 0 \leq \gamma<1$.
A is always well-conditioned: $\kappa(A) \leq \frac{\max \Omega_{i}+\gamma}{\min \Omega_{i}-\gamma} ; \quad$ Can be nonsymmetric; Focus on Hermitian A only.

Scaled Diagonally Dominant Matrices

J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.
$A=\Omega+N$ is γ-diagonally dominant (d.d.): $\Omega=\operatorname{diag}, \operatorname{diag}(N)=0$, $\|N\|_{2} \leq \gamma \min _{i}\left|\Omega_{i}\right|, 0 \leq \gamma<1$.
A is always well-conditioned: $\kappa(A) \leq \frac{\max \Omega_{i}+\gamma}{\min \Omega_{i}-\gamma} ; \quad$ Can be nonsymmetric; Focus on Hermitian A only.
$H=D A D$ is γ-scaled d.d. (s.d.d.): $D=\operatorname{diag}, A$ is γ-d.d.;
J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.
$A=\Omega+N$ is γ-diagonally dominant (d.d.): $\Omega=\operatorname{diag}, \operatorname{diag}(N)=0$, $\|N\|_{2} \leq \gamma \min _{i}\left|\Omega_{i}\right|, 0 \leq \gamma<1$.
A is always well-conditioned: $\kappa(A) \leq \frac{\max \Omega_{i}+\gamma}{\min \Omega_{i}-\gamma} ; \quad$ Can be nonsymmetric; Focus on Hermitian A only.
$H=D A D$ is γ-scaled d.d. (s.d.d.): $D=$ diag, A is γ-d.d.;
$H-\lambda M$ is γ-scaled d.d. definite: H, M are γ-scaled d.d. definite;
J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 27:762-791, 1990.
$A=\Omega+N$ is γ-diagonally dominant (d.d.): $\Omega=\operatorname{diag}, \operatorname{diag}(N)=0$, $\|N\|_{2} \leq \gamma \min _{i}\left|\Omega_{i}\right|, 0 \leq \gamma<1$.
\boldsymbol{A} is always well-conditioned: $\kappa(A) \leq \frac{\max \Omega_{i}+\gamma}{\min \Omega_{i}-\gamma} ; \quad$ Can be nonsymmetric; Focus on Hermitian A only.
$H=D A D$ is γ-scaled d.d. (s.d.d.): $D=$ diag, A is γ-d.d.;
$H-\lambda M$ is γ-scaled d.d. definite: H, M are γ-scaled d.d. definite; Courant-Fischer minimax principle applies.

Scaled Diagonally Dominant Matrices

$H=D A D$ perturbed to $\widetilde{H}=D \widetilde{A} D$, both γ-s.d.d.; H 's eigenvalues: λ_{i} in decreasing order, and eigenvector v_{i}; Similar notation for \widetilde{H}.

Scaled Diagonally Dominant Matrices

$H=D A D$ perturbed to $\widetilde{H}=D \widetilde{A} D$, both γ-s.d.d.; H 's eigenvalues: λ_{i} in decreasing order, and eigenvector v_{i}; Similar notation for \widetilde{H}.

Classical results (convention $\delta X:=\widetilde{X}-X$)

$$
\frac{\left|\delta \lambda_{i}\right|}{\left|\lambda_{i}\right|} \leq \kappa(H) \frac{\|\delta H\|_{2}}{\|H\|_{2}}, \quad \sin \left(v_{i}, \widetilde{v}_{i}\right) \leq O\left(\frac{\|\delta H\|_{2}}{\text { AbsGap }_{i}}\right) .
$$

Bad news for tiny λ_{i} relative to λ_{1} when $\kappa(H) \gg 1$, say of $O\left(10^{-16}\right)$, and for eigenvectors belonging to eigenvalue clusters

Scaled Diagonally Dominant Matrices

$H=D A D$ perturbed to $\widetilde{H}=D \widetilde{A} D$, both γ-s.d.d.; H 's eigenvalues: λ_{i} in decreasing order, and eigenvector v_{i};
Similar notation for \widetilde{H}.
Classical results (convention $\delta X:=\widetilde{X}-X$)

$$
\frac{\left|\delta \lambda_{i}\right|}{\left|\lambda_{i}\right|} \leq \kappa(H) \frac{\|\delta H\|_{2}}{\|H\|_{2}}, \quad \sin \left(v_{i}, \widetilde{v}_{i}\right) \leq O\left(\frac{\|\delta H\|_{2}}{\mathrm{AbsGap}_{i}}\right) .
$$

Bad news for tiny λ_{i} relative to λ_{1} when $\kappa(H) \gg 1$, say of $O\left(10^{-16}\right)$, and for eigenvectors belonging to eigenvalue clusters
New results (sample): if $\epsilon:=\|\delta A\|_{2}<(1-\gamma) / n$, then

$$
\frac{\left|\delta \lambda_{i}\right|}{\left|\lambda_{i}\right|} \leq \frac{n \epsilon}{1-\gamma}+O\left(\epsilon^{2}\right)
$$

Roughly speaking, first $-\log _{2}\left(n_{\epsilon} /(1-\gamma)\right)$ significant bits of $\widetilde{\lambda}_{i}$ are good. Also

$$
\sin \left(v_{i}, \widetilde{v}_{i}\right) \leq O\left(\frac{n \epsilon}{(1-\gamma) \text { RelGap }_{i}}\right)
$$

Numerical methods:
■ via bidiagonal singular value problem
■ bisection via stable inertia computation
■ inverse iteration for eigenvectors

It is maxim!

It is maxim!
J. Demmel and K. Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204-1245, 1992.

It is maxim!
J. Demmel and K. Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204-1245, 1992.

Positive definite $H=D A D: D=\operatorname{diag}, A_{i j}=1$.

It is maxim!
J. Demmel and K. Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204-1245, 1992.

Positive definite $H=D A D: D=\operatorname{diag}, A_{i j}=1$. If H is γ-d.d., results on γ-s.d.d. apply.

It is maxim!
J. Demmel and K. Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204-1245, 1992.

Positive definite $H=D A D: D=\operatorname{diag}, A_{i i}=1$. If H is γ-d.d., results on γ-s.d.d. apply. But H may not be γ-d.d., still $\kappa(A) \ll \kappa(H)$.

It is maxim!
J. Demmel and K. Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204-1245, 1992.

Positive definite $H=D A D: D=\operatorname{diag}, A_{i j}=1$. If H is γ-d.d., results on γ-s.d.d. apply. But H may not be γ-d.d., still $\kappa(A) \ll \kappa(H)$.

Key results (sample):

$$
\frac{\left|\delta \lambda_{i}\right|}{\left|\lambda_{i}\right|} \leq \kappa(A) \epsilon:=\kappa(A) \frac{\|\delta A\|_{2}}{\|A\|_{2}}, \quad \sin \left(v_{i}, \widetilde{v}_{i}\right) \leq O\left(\frac{n \kappa(A) \epsilon}{\operatorname{RelGap}_{i}}\right)
$$

The numerical method

It is maxim!
J. Demmel and K. Veselić. Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl., 13(4):1204-1245, 1992.

Positive definite $H=D A D: D=\operatorname{diag}, A_{i j}=1$. If H is γ-d.d., results on γ-s.d.d. apply. But H may not be γ-d.d., still $\kappa(A) \ll \kappa(H)$.

Key results (sample):

$$
\frac{\left|\delta \lambda_{i}\right|}{\left|\lambda_{i}\right|} \leq \kappa(A) \epsilon:=\kappa(A) \frac{\|\delta A\|_{2}}{\|A\|_{2}}, \quad \sin \left(v_{i}, \widetilde{v}_{i}\right) \leq O\left(\frac{n_{\kappa}(A) \epsilon}{\operatorname{RelGap}_{i}}\right)
$$

The numerical method - Jacobi's.

1 The Big Bang

2 Two immediate "after bangs"

3 Aftermath - Summary

4 Case Study
■ Inverse of M-Matrix

- M-matrix algebraic Riccati equation

5 Conclusions

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
- SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)

- EVD for $X D X^{\top}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)
- Polar decomposition (Li, 1997 \& 2005)

■ Multiplicative perturbation (Eisenstat \& Ipsen, 1995; Li, 1993-2000; C. Li \& Mathias, 1999; Li \& Stewart, 2000; Truhar \& Li, 2003)
■ Deflations preserving relative accuracy (Kahan, work-in-progress)

- M-matrix - smallest eigenvalue, inverses (Xue \& Jiang, 1995; Alfa, Xue, \& Ye, 2002); M-matrix Algebraic Riccati equation (Guo, Lin, \& Xu, 1996; Xue, Xu, \& Li, 2002; Wang, Wang, \& Li, 2012)
■ Diagonally dominant matrices - SVD, LU (Demmel \& Koev, 2004; Ye, 2008-2009; Koev \& Dopico, 2011; Dailey, Dopico, \& Ye, 2014)
■ Matrix exponential for essentially non-negative matrices (Zhu, Xue,\& Gao, 2008; Xue \& Ye, 2008-2013; Shao, Gao, \& Xue, 2014)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)
■ (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)

- SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)
- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
- SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)
- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
■ SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)

- SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)
- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
■ SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
■ SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)
■ EVD for $X D X^{T}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
■ SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)
■ EVD for $X D X^{\top}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)
■ Polar decomposition (Li, 1997 \& 2005)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
■ Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
■ SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)
- SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)
■ EVD for $X D X^{\top}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)
- Polar decomposition (Li, 1997 \& 2005)

■ Multiplicative perturbation (Eisenstat \& Ipsen, 1995; Li, 1993-2000; C. Li \& Mathias, 1999; Li \& Stewart, 2000; Truhar \& Li, 2003)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
■ SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)
■ EVD for $X D X^{T}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)

- Polar decomposition (Li, 1997 \& 2005)

■ Multiplicative perturbation (Eisenstat \& Ipsen, 1995; Li, 1993-2000; C. Li \& Mathias, 1999; Li \& Stewart, 2000; Truhar \& Li, 2003)
■ Deflations preserving relative accuracy (Kahan, work-in-progress)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
- SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)
■ EVD for $X D X^{\top}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)

- Polar decomposition (Li, 1997 \& 2005)

■ Multiplicative perturbation (Eisenstat \& Ipsen, 1995; Li, 1993-2000; C. Li \& Mathias, 1999; Li \& Stewart, 2000; Truhar \& Li, 2003)
■ Deflations preserving relative accuracy (Kahan, work-in-progress)

- M-matrix - smallest eigenvalue, inverses (Xue \& Jiang, 1995; Alfa, Xue, \& Ye, 2002); M-matrix Algebraic Riccati equation (Guo, Lin, \& Xu, 1996; Xue, Xu, \& Li, 2002; Wang, Wang, \& Li, 2012; Nguyen \& Poloni, 2015)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
- SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)
■ EVD for $X D X^{\top}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)

- Polar decomposition (Li, 1997 \& 2005)

■ Multiplicative perturbation (Eisenstat \& Ipsen, 1995; Li, 1993-2000; C. Li \& Mathias, 1999; Li \& Stewart, 2000; Truhar \& Li, 2003)
■ Deflations preserving relative accuracy (Kahan, work-in-progress)

- M-matrix - smallest eigenvalue, inverses (Xue \& Jiang, 1995; Alfa, Xue, \& Ye, 2002); M-matrix Algebraic Riccati equation (Guo, Lin, \& Xu, 1996; Xue, Xu, \& Li, 2002; Wang, Wang, \& Li, 2012; Nguyen \& Poloni, 2015)
■ Diagonally dominant matrices - SVD, LU (Demmel \& Koev, 2004; Ye, 2008-2009; Koev \& Dopico, 2011; Dailey, Dopico, \& Ye, 2014)

■ SVD for matrices with acyclic graphs (Demmel \& Gragg, 1993)

- (Entrywise) perturbations of Hermitian matrices (Veselić \& Slapničar, 1993; Truhar \& Slapničar, 1999; Dopico, Moro, \& Molera, 2000)
■ dqds for bidiagonal SVD (Fernando \& Parlett, 1994); implementation of dqds on positive definite tridiagonal matrices (Parlett \& Marques, 2000);
- Accurate EVD for symmetric tridiagonals, MRRR (Parlett \& Dhillon, 2000 \& 2003; Dhillon, Parlett, \& Vömel, 2006; ...)
- SVD for Cauchy, Vandermonde matrices, and related unit-displacement-rank matrices (Demmel 1999); polynomial Vandermonde matrices (Demmel \& Koev, 2006)

■ SVD for $X D Y^{\top}$ with $D=$ diag, well-conditioned X and Y (D.G.E.S.V.D, 1999); As stage 1 for EVP (Dopico, Molera, \& Moro, 2003)
■ SVD for $B^{T} C$ (Drmač, 1998); SVD via fast Jacobi (Drmač \& Veselić, 2008)

- EVD for $X D X^{\top}$ with $D=$ diag, well-conditioned X (Dopico, Koev, Molera, 2009)
- Polar decomposition (Li, 1997 \& 2005)

■ Multiplicative perturbation (Eisenstat \& Ipsen, 1995; Li, 1993-2000; C. Li \& Mathias, 1999; Li \& Stewart, 2000; Truhar \& Li, 2003)
■ Deflations preserving relative accuracy (Kahan, work-in-progress)

- M-matrix - smallest eigenvalue, inverses (Xue \& Jiang, 1995; Alfa, Xue, \& Ye, 2002); M-matrix Algebraic Riccati equation (Guo, Lin, \& Xu, 1996; Xue, Xu, \& Li, 2002; Wang, Wang, \& Li, 2012; Nguyen \& Poloni, 2015)
■ Diagonally dominant matrices - SVD, LU (Demmel \& Koev, 2004; Ye, 2008-2009; Koev \& Dopico, 2011; Dailey, Dopico, \& Ye, 2014)
- Matrix exponential for essentially non-negative matrices (Zhu, Xue,\& Gao, 2008; Xue \& Ye, 2008-2013; Shao, Gao, \& Xue, 2014)

Outline

1 The Big Bang

2 Two immediate "after bangs"

3 Aftermath - Summary

4 Case Study
■ Inverse of M-Matrix
■ M-matrix algebraic Riccati equation

5 Conclusions
Z-matrix $A \in \mathbb{R}^{n \times n}$: nonpositive off-diagonal entries.
Z-matrix $A \in \mathbb{R}^{n \times n}$: nonpositive off-diagonal entries.
Z-matrix $A=s l-N, N \geq 0$ entrywise, $s \in \mathbb{R}$.
Z-matrix $A \in \mathbb{R}^{n \times n}$: nonpositive off-diagonal entries.
Z-matrix $A=s l-N, N \geq 0$ entrywise, $s \in \mathbb{R}$.
Z-matrix $A=s l-N$ is

M-matrix	if $s \geq \rho(N)$
singular M-matrix	if $s=\rho(N)$
nonsingular M-matrix	if $s>\rho(N)$

Z-matrix $A \in \mathbb{R}^{n \times n}$: nonpositive off-diagonal entries.
Z-matrix $A=s I-N, N \geq 0$ entrywise, $s \in \mathbb{R}$.
Z-matrix $A=s l-N$ is

M-matrix	if $s \geq \rho(N)$
singular M-matrix	if $s=\rho(N)$
nonsingular M-matrix	if $s>\rho(N)$

Numerically advantageous to represent M-matrix A by the triplet

$$
A=\left\{N_{A}, u, v\right\}
$$

where $D_{A}=\operatorname{diag}(A), N_{A}=D_{A}-A \geq 0$, vector $u>0$, and $v=A u \geq 0$.
Z-matrix $A \in \mathbb{R}^{n \times n}$: nonpositive off-diagonal entries.
Z-matrix $A=s I-N, N \geq 0$ entrywise, $s \in \mathbb{R}$.
Z-matrix $A=s l-N$ is

M-matrix	if $s \geq \rho(N)$
singular M-matrix	if $s=\rho(N)$
nonsingular M-matrix	if $s>\rho(N)$

Numerically advantageous to represent M-matrix A by the triplet

$$
A=\left\{N_{A}, u, v\right\}
$$

where $D_{A}=\operatorname{diag}(A), N_{A}=D_{A}-A \geq 0$, vector $u>0$, and $v=A u \geq 0$.
If needed, can recover D_{A} by $D_{A} u=v+N_{A} u$ without subtraction.

[Alfa, Xue, \& Ye, 2002]

Nonsingular M-matrix $A=\left\{N_{A}, u, v\right\}$ perturbed to $\widetilde{A}=\left\{N_{\widetilde{A}}, u, \widetilde{v}\right\}$ satisfying

$$
\left|N_{\tilde{A}}-N_{A}\right| \leq \epsilon N_{A}, \quad|\widetilde{v}-v| \leq \epsilon V .
$$

Then \widetilde{A} is also an nonsingular M-matrix, and

$$
\frac{(1-\epsilon)^{n-1}}{(1+\epsilon)^{n}} A^{-1} \leq \widetilde{A}^{-1} \leq \frac{(1+\epsilon)^{n-1}}{(1-\epsilon)^{n}} A^{-1} .
$$

[Alfa, Xue, \& Ye, 2002]

Nonsingular M-matrix $A=\left\{N_{A}, u, v\right\}$ perturbed to $\widetilde{A}=\left\{N_{\widetilde{A}}, u, \widetilde{v}\right\}$ satisfying

$$
\left|N_{\tilde{A}}-N_{A}\right| \leq \epsilon N_{A}, \quad|\widetilde{v}-v| \leq \epsilon V .
$$

Then \widetilde{A} is also an nonsingular M-matrix, and

$$
\frac{(1-\epsilon)^{n-1}}{(1+\epsilon)^{n}} A^{-1} \leq \widetilde{A}^{-1} \leq \frac{(1+\epsilon)^{n-1}}{(1-\epsilon)^{n}} A^{-1} .
$$

[Alfa, Xue, \& Ye, 2002] GTH-like algorithm, a version of Gaussian elimination without pivoting, working on $\left\{N_{A}, u, v\right\}$ but not A will compute A^{-1} this accurate.

ARE: $X D X-A X-X B+C=0, X_{n \times m},{ }_{n}^{m}\left[\begin{array}{cc}m & n \\ C & D\end{array}\right]$.

ARE: $X D X-A X-X B+C=0, X_{n \times m},{ }_{n}^{m}\left[\begin{array}{cc}m & n \\ B & D\end{array}\right]$. Sym. ARE: $X D X-A X-X A^{T}+C=0, C^{T}=C, D^{T}=D$.

ARE: $X D X-A X-X B+C=0, X_{n \times m},{ }_{n}^{m}\left[\begin{array}{cc}m & n \\ B & D\end{array}\right]$. Sym. ARE: $X D X-A X-X A^{T}+C=0, C^{T}=C, D^{T}=D$. Herm. ARE: $X D X-A X-X A^{H}+C=0, C^{H}=C, D^{H}=D$.
Frequently appear in Optimal Control Theory, Well-studied.

ARE: $X D X-A X-X B+C=0, X_{n \times m},{ }_{n}^{m}\left[\begin{array}{cc}m & n \\ B & D\end{array}\right]$.
Sym. ARE: $X D X-A X-X A^{T}+C=0, C^{T}=C, D^{T}=D$.
Herm. ARE: $X D X-A X-X A^{H}+C=0, C^{H}=C, D^{H}=D$.
Frequently appear in Optimal Control Theory, Well-studied.
Refs:
■ Lancaster \& Rodman, Algebraic Riccati Equations, 1995. containing comprehensive treatment of ARE in general
■ Zhou \& Doyle \& Glover, Robust and Optimal Control, 1995. containing in-depth treatment of Hermitian ARE from OPT

It is an MARE: $X D X-A X-X B+C=0$ if

$$
\begin{align*}
& W=\left[\begin{array}{rr}
B & -D \\
-C & A
\end{array}\right] \text { is a nonsingular or an irre- } \tag{1}\\
& \text { ducible singular } M \text {-matrix. }
\end{align*}
$$

Arise in applied probability, transportation theory, stochastic fluid models. MARE has a unique minimal nonnegative solution Φ, i.e.,

It is an MARE: $X D X-A X-X B+C=0$ if

$$
\begin{align*}
& W=\left[\begin{array}{rr}
B & -D \\
-C & A
\end{array}\right] \text { is a nonsingular or an irre- } \tag{1}\\
& \text { ducible singular } M \text {-matrix. }
\end{align*}
$$

Arise in applied probability, transportation theory, stochastic fluid models.

MARE has a unique minimal nonnegative solution Φ, i.e.,

It is an MARE: $X D X-A X-X B+C=0$ if

$$
\begin{aligned}
& W=\left[\begin{array}{rr}
B & -D \\
-C & A
\end{array}\right] \text { is a nonsingular or an irre- } \\
& \text { ducible singular } M \text {-matrix. }
\end{aligned}
$$

Arise in applied probability, transportation theory, stochastic fluid models.

MARE has a unique minimal nonnegative solution Φ, i.e.,

$$
0 \leq \Phi \leq X \quad \text { for any other nonnegative solution } X .
$$

$\Phi_{i j}$ represent probabilities; even tiny ones are useful.

MARE in Critical Case

$$
W=\left[\begin{array}{rr}
B & -D \\
-C & A
\end{array}\right] \text { is irreducible and singular. }
$$

$$
W=\left[\begin{array}{rr}
B & -D \\
-C & A
\end{array}\right] \text { is irreducible and singular. }
$$

Let $x_{i}, y_{i}>0$ such that

$$
W\left[\begin{array}{l}
y_{1} \tag{2}\\
y_{2}
\end{array}\right]=0, \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top} W=0
$$

$W=\left[\begin{array}{rr}B & -D \\ -C & A\end{array}\right]$ is irreducible and singular.
Let $x_{i}, y_{i}>0$ such that

$$
W\left[\begin{array}{l}
y_{1} \tag{2}\\
y_{2}
\end{array}\right]=0, \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top} W=0
$$

Critical Case: $x_{1}^{\top} y_{1}=x_{2}^{\top} y_{2}$.
$W=\left[\begin{array}{rr}B & -D \\ -C & A\end{array}\right]$ is irreducible and singular.
Let $x_{i}, y_{i}>0$ such that

$$
W\left[\begin{array}{l}
y_{1} \tag{2}\\
y_{2}
\end{array}\right]=0, \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top} W=0
$$

Critical Case: $x_{1}^{\top} y_{1}=x_{2}^{\top} y_{2}$.
Not so much of practical importance, but theoretically interesting nonetheless.
$W=\left[\begin{array}{rr}B & -D \\ -C & A\end{array}\right]$ and \widetilde{W}, nonsingular or irreducible singular M-matrices.

Relative perturbation:
$|\widetilde{A}-A| \leq \epsilon|A|,|\widetilde{B}-B| \leq \epsilon|B|,|\widetilde{C}-C| \leq \epsilon C,|\widetilde{D}-D| \leq \epsilon D, 0 \leq \epsilon<1$.

MAREs: $X D X-A X-X B+C=0, \widetilde{X} \widetilde{D} \widetilde{X}-\widetilde{A} \widetilde{X}-\widetilde{X} \widetilde{B}+\widetilde{C}=0$

$W=\left[\begin{array}{rr}B & -D \\ -C & A\end{array}\right]$ and \widetilde{W}, nonsingular or irreducible singular M-matrices.

Relative perturbation:
$|\widetilde{A}-A| \leq \epsilon|A|,|\widetilde{B}-B| \leq \epsilon|B|,|\widetilde{C}-C| \leq \epsilon C,|\widetilde{D}-D| \leq \epsilon D, 0 \leq \epsilon<1$.
Proposition (Xue, Xu, Li, 2012)
$\widetilde{\Phi}_{(i, j)}=0$ if and only if $\Phi_{(i, j)}=0$.

Thus make sense to study entrywise relative accuracy.
$W=\left[\begin{array}{rr}B & -D \\ -C & A\end{array}\right]$ and \widetilde{W}, nonsingular or irreducible singular M-matrices.

Relative perturbation:
$|\widetilde{A}-A| \leq \epsilon|A|,|\widetilde{B}-B| \leq \epsilon|B|,|\widetilde{C}-C| \leq \epsilon C,|\widetilde{D}-D| \leq \epsilon D, 0 \leq \epsilon<1$.

Proposition (xue, Xu, Li, 2012)

$\widetilde{\Phi}_{(i, j)}=0$ if and only if $\Phi_{(i, j)}=0$.

Thus make sense to study entrywise relative accuracy.

Theorem (Xue, Xu, Li, 2012)

If not in the critical case, then

$$
\begin{gathered}
|\Phi-\widetilde{\Phi}| \leq\left[2 \gamma \epsilon \mathbf{1}_{n, m}+O\left(\epsilon^{2}\right)\right] \Phi, \quad \text { where } \\
(A-\Phi D) \Upsilon+\Upsilon(B-D \Phi)=D_{1} \Phi+\Phi D_{2}, \quad \gamma=\max _{i, j} \frac{\Upsilon_{(i, j)}}{\Phi_{(i, j)}}<\infty .
\end{gathered}
$$

MAREs: $X D X-A X-X B+C=0, \widetilde{X} \widetilde{D} \widetilde{X}-\widetilde{A} \widetilde{X}-\widetilde{X} \widetilde{B}+\widetilde{C}=0$

Relative perturbation: $|\widetilde{A}-A| \leq \epsilon|A|,|\widetilde{B}-B| \leq \epsilon|B|,|\widetilde{C}-C| \leq \epsilon C,|\widetilde{D}-D| \leq \epsilon D, 0 \leq \epsilon<1$.

Theorem 2 (Xue, Xu, Li, 2012).

where $(A-\Phi D) \Phi_{1}+\Phi_{1}(B-D \Phi)=C, \kappa=\max \left(\Phi_{1}\right)_{(i, j)} / \Phi_{(i, j)}<\infty$, and

MAREs: $X D X-A X-X B+C=0, \widetilde{X} \widetilde{D} \widetilde{X}-\widetilde{A} \widetilde{X}-\widetilde{X} \widetilde{B}+\widetilde{C}=0$

Relative perturbation: $|\widetilde{A}-A| \leq \epsilon|A|,|\widetilde{B}-B| \leq \epsilon|B|,|\widetilde{C}-C| \leq \epsilon C,|\widetilde{D}-D| \leq \epsilon D, 0 \leq \epsilon<1$.

$$
\begin{aligned}
& A=D_{1}-N_{1}, \quad D_{1}=\operatorname{diag}(A), \quad B=D_{2}-N_{2}, \quad D_{2}=\operatorname{diag}(B) \\
& A-\Phi D=D_{1}-N_{1}-\Phi D, \quad B-D \Phi=D_{2}-N_{2}-D \Phi \\
& \lambda_{1}=\rho\left(D_{1}^{-1}\left(N_{1}+\Phi D\right)\right), \quad \lambda_{2}=\rho\left(D_{2}^{-1}\left(N_{2}+D \Phi\right)\right), \quad \lambda=\max \left\{\lambda_{1}, \lambda_{2}\right\}, \\
& \tau_{1}=\frac{\min _{i} A_{(i, i)}}{\max _{j} B_{(j, j)}}, \quad \tau_{2}=\frac{\min _{j} B_{(j, j)}}{\max _{i} A_{(i, i)}} .
\end{aligned}
$$

Theorem 2 (Xue, Xu, Li, 2012)
where $(A-\Phi D) \Phi_{1}+\Phi_{1}(B-D \Phi)=C, \kappa=\max \left(\Phi_{1}\right)_{(i, j)} / \Phi_{(i, j)}<\infty$, and

MAREs: $X D X-A X-X B+C=0, \widetilde{X} \widetilde{D} \widetilde{X}-\widetilde{A} \widetilde{X}-\widetilde{X} \widetilde{B}+\widetilde{C}=0$

Relative perturbation: $|\widetilde{A}-A| \leq \epsilon|A|,|\widetilde{B}-B| \leq \epsilon|B|,|\widetilde{C}-C| \leq \epsilon C,|\widetilde{D}-D| \leq \epsilon D, 0 \leq \epsilon<1$.

$$
\begin{aligned}
& A=D_{1}-N_{1}, \quad D_{1}=\operatorname{diag}(A), \quad B=D_{2}-N_{2}, \quad D_{2}=\operatorname{diag}(B) \\
& A-\Phi D=D_{1}-N_{1}-\Phi D, \quad B-D \Phi=D_{2}-N_{2}-D \Phi \\
& \lambda_{1}=\rho\left(D_{1}^{-1}\left(N_{1}+\Phi D\right)\right), \quad \lambda_{2}=\rho\left(D_{2}^{-1}\left(N_{2}+D \Phi\right)\right), \quad \lambda=\max \left\{\lambda_{1}, \lambda_{2}\right\}, \\
& \tau_{1}=\frac{\min _{i} A_{(i, i)}}{\max _{j} B_{(j, j)}}, \quad \tau_{2}=\frac{\min _{j} B_{(j, j)}}{\max _{i} A_{(i, i)}} .
\end{aligned}
$$

Theorem 2 (Xue, Xu, Li, 2012).

If not in the critical case, then

$$
|\Phi-\widetilde{\Phi}| \leq\left[2 m n \kappa \chi \epsilon+O\left(\epsilon^{2}\right)\right] \Phi
$$

where $(A-\Phi D) \Phi_{1}+\Phi_{1}(B-D \Phi)=C, \kappa=\max _{i, j}\left(\Phi_{1}\right)_{(i, j)} / \Phi_{(i, j)}<\infty$, and

- for nonsingular M-matrix W,

$$
\chi=\max \left\{\frac{1+\lambda_{1}+\left(1+\lambda_{2}\right) \tau_{1}^{-1}}{1-\lambda_{1}+\left(1-\lambda_{2}\right) \tau_{1}^{-1}}, \frac{1+\lambda_{2}+\left(1+\lambda_{1}\right) \tau_{2}^{-1}}{1-\lambda_{2}+\left(1-\lambda_{1}\right) \tau_{2}^{-1}}\right\} \leq \frac{1+\lambda}{1-\lambda}
$$

■ for singular M-matrix $W, \chi=2 \times \begin{cases}\frac{1+\lambda_{1}+2 \tau_{1}^{-1}}{1-\lambda_{1}}, & \text { if } x_{1}^{\top} y_{1}>x_{2}^{\top} y_{2}, \\ \frac{1+\lambda_{2}+2 \tau_{2}^{-1}}{1-\lambda_{2}}, & \text { if } x_{1}^{\top} y_{1}<x_{2}^{\top} y_{2} .\end{cases}$

■ Newton method: naturally, after all it is a nonlinear equation - Guo, Higham, Laub, etc.
■ Fixed point iterations [C. Guo, 2001]
■ Doubling algorithms - SDA [X. Guo, Lin, \& Xu, 2006], SDA-ss [Bini, Meini, and Poloni, 2010], and, optimal of all, ADDA [Wang, Wang, \& Li, 2012]
■ Cyclic reduction on equivalent unilateral quadratic matrix equation $B_{2} Z^{2}+B_{1} Z+B_{0}=0[B i n i$, Meini, and Poloni, 2010]
Some of them are doubling algorithms in disguise!

MARE: ADDA [Wang, Wang, \& Li, 2012]

1: $\alpha=\left[\max _{1 \leq i \leq m} A_{(i, i)}\right]^{-1}, \beta=\left[\max _{1 \leq j \leq n} B_{(j, j)}\right]^{-1}, k=0$;
2: $k=0$ and compute

$$
\left[\begin{array}{ll}
E_{0} & Y_{0} \tag{3}\\
X_{0} & F_{0}
\end{array}\right]=\left[\begin{array}{cc}
\alpha B+I_{m} & -\beta \boldsymbol{D} \\
-\alpha C & \beta \boldsymbol{A}+I_{n}
\end{array}\right]^{-1}\left[\begin{array}{cc}
I_{m}-\beta B & \alpha D \\
\beta C & I_{n}-\alpha A
\end{array}\right]
$$

3: repeat
4: compute

$$
\begin{align*}
E_{k+1} & =E_{k}\left(I-Y_{k} X_{k}\right)^{-1} E_{k}, \tag{4a}\\
F_{k+1} & =F_{k}\left(I-X_{k} Y_{k}\right)^{-1} F_{k}, \tag{4b}\\
Y_{k+1} & =Y_{k}+E_{k}\left(I-Y_{k} X_{k}\right)^{-1} Y_{k} F_{k} \tag{4c}\\
X_{k+1} & =X_{k}+F_{k}\left(I-X_{k} Y_{k}\right)^{-1} X_{k} E_{k} \tag{4d}
\end{align*}
$$

5: $\quad k=k+1$;
6: until convergence;
7: return the last X_{k} as approximations to Φ.

MARE: accurate implementation of ADDA

If a triplet representation of

$$
W=\left[\begin{array}{rr}
B & -D \\
-C & A
\end{array}\right]
$$

is known to begin with, then there is a way to implement ADDA without any substraction [Xue \& Li, work-in-progress].

$$
B=\left[\begin{array}{cccc}
3 & -1 & & \\
& 3 & \ddots & \\
& & \ddots & -1 \\
-1 & & & 3
\end{array}\right] \in \mathbb{R}^{n \times n}, C=2 I_{n}, A=\xi B, D=\xi C
$$

where $\xi>0$ is a parameter. W is an irreducible singular M-matrix:

$$
W\left[\begin{array}{c}
\mathbf{1}_{n} \\
\xi^{-1} \mathbf{1}_{n}
\end{array}\right]=0, \quad \mathbf{1}_{2 n}^{\top} W=0
$$

It is in the critical case if $\xi=1$ and not in the critical case otherwise.

$$
B=\left[\begin{array}{cccc}
3 & -1 & & \\
& 3 & \ddots & \\
& & \ddots & -1 \\
-1 & & & 3
\end{array}\right] \in \mathbb{R}^{n \times n}, C=2 I_{n}, A=\xi B, D=\xi C
$$

where $\xi>0$ is a parameter. W is an irreducible singular M-matrix:

$$
W\left[\begin{array}{c}
\mathbf{1}_{n} \\
\xi^{-1} \mathbf{1}_{n}
\end{array}\right]=0, \quad \mathbf{1}_{2 n}^{\top} W=0
$$

It is in the critical case if $\xi=1$ and not in the critical case otherwise.

The "exact" solutions Φ :

$$
\begin{aligned}
7.4339 \cdot 10^{-4} \leq \Phi_{(i, j)} \leq 3.8270 \cdot 10^{-1}, & \text { for } \xi=1 \\
1.3336 \cdot 10^{-35} \leq \Phi_{(i, j)} \leq 4.0231 \cdot 10^{-2}, & \text { for } \xi=2^{4}
\end{aligned}
$$

Normalized Residual (NRes) - (readily available):

$$
\text { NRes }=\frac{\|\widehat{\Phi} D \widehat{\Phi}-A \widehat{\Phi}-\widehat{\Phi} B+C\|}{\|\widehat{\Phi}\|(\|\widehat{\Phi}\|\|D\|+\|A\|+\|B\|)+\|C\|} .
$$

Will use $\|\cdot\|=\|\cdot\|_{1}$ for convenience.
Entrywise Relative Error (ERErr) - (not readily available):

$$
\text { ERErr }=\max _{i, j} \frac{\left|(\widehat{\Phi}-\Phi)_{(i, j)}\right|}{\Phi_{(i, j)}}
$$

Made available for testing purpose.

Convergence History

$7.4339 \cdot 10^{-4} \leq \Phi_{(i, j)} \leq 3.8270 \cdot 10^{-1}$, for $\xi=1$ (left plot), $1.3336 \cdot 10^{-35} \leq \Phi_{(i, j)} \leq 4.0231 \cdot 10^{-2}, \quad$ for $\xi=2^{4}$ (right plot).

1 The Big Bang

2 Two immediate "after bangs"

3 Aftermath - Summary

4 Case Study
■ Inverse of M-Matrix

- M-matrix algebraic Riccati equation

5 Conclusions

■ Numerous "stars" formed after the "big bang"
■ "Universe" is expanding

■ Numerous "stars" formed after the "big bang"
■ "Universe" is expanding

Happy 60th Birthday, Jim!

